Real-Time Telemetry
Mission Time:T+0.0 s
Altitude:0.0 km
Velocity:0 m/s
Mach Number:0.00
G-Force:0.0 g
Max Q:0 kPa
Stage:1
TWR:0.00
Advanced Parameters
Stage 1 Configuration
100,000 kg
90%
2000 kN
300 s
Aerodynamics & Environment
0.30
25 m²
15 m/s
Propulsion Analysis
Current Mass:100.0 t
Fuel Remaining:90.0 t
Burn Time:0 s
Effective Isp:300 s
Mass Flow Rate:0 kg/s
Engine Status:OFF
Environmental Conditions
Temperature:288.0 K
Pressure:101.3 kPa
Air Density:1.225 kg/m³
Sound Speed:343 m/s
Scale Height:8.4 km
Wind Vector:15.0 m/s @ 90°
Mission Performance
Apogee:0.0 km
Max Velocity:0 m/s
Max Mach:0.00
Total ΔV:0 m/s
Gravity Losses:0 m/s
Drag Losses:0 m/s
Scientific Validation
Advanced Physics Models:
• US Standard Atmosphere 1976 (8-layer model)
• Compressible flow with γ = 1.4
• Variable gravity: g(h) = GM/(R+h)²
• Multi-stage mass ratios (Tsiolkovsky)
• Engine Isp variation: Isp(h) = Isp₀ × η(Pₑ/P₀)
• Atmospheric boundary layer wind shear
• Monte Carlo uncertainty propagation
• Guidance system: PID + gravity turn
Key Equations Implemented:
• Rocket Equation: Δv = Isp×g₀×ln(m₀/m₁)
• Dynamic Pressure: q = ½ρv²
• Mach Number: M = v/√(γRT)
• Drag Force: F_D = ½ρv²C_D A
• Nozzle Efficiency: η = f(P_exit/P_amb)
• Coriolis: a_cor = -2Ω × v
• US Standard Atmosphere 1976 (8-layer model)
• Compressible flow with γ = 1.4
• Variable gravity: g(h) = GM/(R+h)²
• Multi-stage mass ratios (Tsiolkovsky)
• Engine Isp variation: Isp(h) = Isp₀ × η(Pₑ/P₀)
• Atmospheric boundary layer wind shear
• Monte Carlo uncertainty propagation
• Guidance system: PID + gravity turn
Key Equations Implemented:
• Rocket Equation: Δv = Isp×g₀×ln(m₀/m₁)
• Dynamic Pressure: q = ½ρv²
• Mach Number: M = v/√(γRT)
• Drag Force: F_D = ½ρv²C_D A
• Nozzle Efficiency: η = f(P_exit/P_amb)
• Coriolis: a_cor = -2Ω × v
Monte Carlo Analysis (1000 runs):